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Industry District heating sector

4 The industry sector in 2022 was directly responsible 4
for emitting 9.0 Gt of CO,, accounting for a quarter

The EU district heating sector accounts for around

30% of the overall energy demands

o
of global energy system CO, emissions®. 4 Only 25% of DHSs are driven by renewable energy?

4 Annual emissions slightly declined in both 2020 and
2022, but not enough to align with the Net Zero
Emissions by 2050 (NZE) Scenario, in which
industrial emissions fall to about 7 Gt CO2 by 2030

4 EU forced the strategy for making heating and cooling
more efficient and sustainable that presumes sector
decarbonization

4 Focus on Eastern Europe, where district heating is

4 In 2021, the EU industry sector accounted for 25.6 %

based mostly on fossil fuels.
of the final energy consumption?

1Tracking Clean Energy Progress 2023, IEA
2Eurostat
3IEA report




The aim of energy partnering @ INTREF! @(j@sdewes

Conventionally Preferred

=»

Benefits

4 reduction in the final energy consumption

& costs (direct) Need to exploit the degrees of freedom

4  Pollution reduction within the system to produce energy
4  Reduction of equipment size (energy efficiently that achieve the desired
generating) decarbonization goals

4 Reduction in auxiliary energy consumption
(pumps, fans, etc.)



Hierarchy of Process System
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Example of real industrial process
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Boldyryev S., Gil T. Debottlenecking of existing hydrocracking unit by improved heat recovery for energy and carbon dioxide savings. Energy Conversion and Management. Vol. 238, 2021 114164
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Energy targeting i

Process integration approach
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Improving the heat recovery
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Energy saving measures
" Flowsheet upgrade
= Revamping of heat exchangers

= Economic efficiency

Results

= A retrofit project with improved heat
recovery is proposed

= The reduction in fuel gas consumption
in furnaces is 54%

= The reduction in electricity
consumption is 20%

= Emissions reduction is 18.9 ktCO,/y

Boldyryev S., Gil T. Debottlenecking of existing hydrocracking unit by improved heat recovery for energy and carbon dioxide savings. Energy Conversion and Management. Vol. 238, 2021 114164.
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Electrification of process heat

Heating the process
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Cooling the process
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Integration of district heating

Heating the process
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Cooling the process
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Gas fractioning plant (UniSim model)

Propane

= The plant capacity is 4 Mt/y (feed)

= Hot utility is a steam (4 and 2 bar)

= Cold utility are cooling water and air coolers
= Low-temperature district heating (30260 °C)
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Energy targeting Exchanger network design
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Final plant design (UniSim model) Heat exchanger design

P o= l TEMA Style Summary
DHS |n 1 Diam/Length{mm) 530.5/ €0%&.0 TypelEL , HORIZOWNTZL 1 Exchgrs connected 1 series x 1 para. Selection Basis: COST
— 2 Surface areas mZ - total 124.77 - /shell 124.77 — heat transfer lzz.33 STE cost 386l
E-23A EPF HOT SHELLSIDE COLD TUBESIDE
INLET OUTLET INLET OUTLET
*FLOWRATES™* UNITS iC4 Gas-»2 DHS_in-»DHS_ocut *CLERRBRNCES ETC.*
3 Total Fluid Flowing kg/h 43708.1 100138.4 1 Tube/Baffle (Diametric) mm 0.39630
N — 4 Total Vapour + Gas kg/h 43708.1 3832 .8 a.a 0.0 2 BundlesShell (Diametric) mm 12.700
D Q—E9—1—ESC4_GBS 10 5 Total Liguid kg/h a.o 34075.4 100128.4  100138.4 3 Baffle/Shell (Diametric) mm 4_78250
— . & Steam/Water kg/h 0.0 0.0 4 Baffle Thickness mm 5.52500
iC4_Liq MIX-101 E-10/10A |-C4 7 Non-Condensables ka/h 0.a 0.0
7 8 Condensed/Evaporated kg/h 34075.4 a.0 *PERCENTRCE OF TOTRL PRESSURE DROEP*
5 Shell ¥-Flow 28.% Tube Straight 47.5
# *LIQUID PROPERTIES* L3 Window 35.3 Return 5.3
3 Density kg/m3 a.a 505.7 1003.7 985.2 7 Ends 18.8
?&?1 5 rmﬂ DHS OUt 10 Viscosity centipoise a.0000 0.1150 0.7372 0.5051 a Nozzle 17.0 Nozzle 47.3
: ., f— 11 Specific Heat kI/kg E 0.0000 2.817z2 4_3132 43240
E ﬂ 12 Conductivity W/m K 0.0000 0.0752 0.glgz 0.6475 *DIMENSIONLESS NUMBERS* Shell Tube
E-11 13 Molecular Weight 0.00 T0.0% 0.4a0 Q.00 5 Reynolds In Gas/Vapour 18€474. a.
c-3 n'C4 10 Cut Gas/Vapour 41217. 0.
*VAPOUR PROEPERTIES* 11 In Ligquid o. 17514.
14 Density kg/m3 22.5487 22.1011 0.0000 0.0000 12 Cut Liquid 11380. 27428,
15 Viscosity centipoise 0.0030 0.00%0 0.0000 0.0000 12 Prandtl In Gas/Vapour 0.83%21 0.0000
1€ Specific Heat kJ/kg E 2.0322 2.0185 0.00400 0.0000 14 Cut Gas/Vapour O0.8501 0.0000
17 Conductivity W/m E 0.0205 0.0Z03 0.0000 0.0000 15 In Ligquid 0.000 5.5&82
18 Molecular weight £9.75 &8.57 0.00 0.00 1& Cut Ligquid 4.308 3.400
h *Z-PHRSE PROPERTIES*
Heat exc anger summary 1% Latent heat kJ/kg 235.5Z 296.37 0.00 0.00
*HEAT LORDS* Shell Tube
] Heat duty: 2880 kW +TEMDERATURES AND DRESSURZS* 15 Cas/Vapour i 1. 0.
20 Stream c €4.324 el.48 30.400 54.00 20 Cond./Evap. kW 2875, 0.
. 2 21 Bulk Average ¢ Skin c €2.591 50.338 44 36 4%.%4 21 Ligquid kW a. 2880.
L Heat tranSfer area Is 122,93 m 22 Pressure In/fOut bar 5.070 4 8.983 3.000 /  2.77%
2 22 Wet Wall Desuperheat. ¥YES: HIC Fact. NO
BB 23 DP Czle./Eatimated bar a.0870 / 0.1000 0.2251 / 1.0000 283 Vap.Shear Enhancement YES5: TUser HIC NO
" Heat transfer coefficient 1277.27 W/m* K (Primvimaaaiscesiaat .07 / -b.ac6  a.ates ) 0.ated
{Nozzles+Turns/Eravitational) 0.0148 1 0.0000 0.1183 7/ 0.0000
u Type: Shell_and_tu be *HT. TRRLNS. COEFF/RESIST* *Veloc. /Momentum Flux mia S kg/m sZ
24 Stream W/m2 E 1s83. / .0005043 4301. / .0002325 24 Shell-Nozzle Inlet &€.05 / 828.1
. 25 Fouling W/m2 E 0. / .0000000 a. / .0000000 25 Cutlet 1.z2 7/ 315.1
= Length/diameter: 6096/254 mm 26 wa1 wraz ¥ s1e7s / ooooser 26 e 000 /a0
27 Overall Clean W/m2 E 1z77. f .000782% 27 ¥-Flow Highest 3.81 7 3445
1 . b I 28 Overall Dirt W/m2 K 1z277. / .000782% =] Window Highest 7.08 7 113z2.1
= Material: carbon stee ! 2% Tune eoils imiec L i1ess




Summary

Systematic approach plays pivotal role in industry-DH integration
Finding a real potential important to get more benefits
Process integration allows effectively decarbonise process industry with
— Heat recovery improvement
— Electrification of process heat
— Effectively use of District Heating for process heating and cooling
Economic trade-off and KPI can be estimated before redesign the process
— Energy saving
— Emission saving
— CAPEX, OPEX
— NPV, IRR, PI

Further steps with final process design, scheduling, process safety are recommended
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Thank you for your attention!

Q&A session
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https://powerlab.fsb.hr/sboldyryev/
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