Oanist Energy
 Agency

Cron Germanne til dig

Development Plan MPEC Ostróda

Who am I and who is Artelia?

Mathias V. Steenstrup
 Engineer and project manager
 District heating

• Artelia

Independent multi-disciplinary engineering & project management company

- 5 main markets/fields
 - Energy ← District Heating
 - Industry
 - Buildings
 - Mobility
 - o Water

V VIEKS

Grøn fjernvarme til dig

ARTELIA

MPEC OSTRÓDA

DBDH

Danish Energy

Agency

Agenda/journey

MPEC Ostróda 2025

- MPEC Ostróda were formerly dependent on coal
- Today heat (and electricity) is produced from a mix of natural gas, biomass and coal
- The price of heat has been highly influenced by the energy crisis from 2021-2023, but since then MPEC Ostróda has managed to lower the price by 18%

MPEC Ostróda 2025

- MPEC Ostróda were formerly dependent on coal
- Today heat (and electricity) is produced from a mix of natural gas, biomass and coal
- A calibrated simulation model of MPEC Ostróda's production is made to simulate future scenarios
 - Simulation tool: EnergyPRO
- Baseload is covered by CHP, biomass boiler and natural gas boiler while the peak load is covered by coal boilers
- The share of RES is 27 % and fossil fuels 38 %
- The remaining 35 % is CHP

Aims

- EU Energy Efficiency Directive (EU/2023/1791)
 - MPEC Ostróda meets the criteria of 2027 by having
 62 % combined RES and CHP
 - The criteria of 2028 can be obtained by meeting the criteria of "high-efficiency CHP"
 - >10 % Primary Energy Saving (PES)
 - <270 gCO₂ per 1 kWh_{heating+cooling}
 - Criteria of 2035 are applied for this project
- Local aims

o ...

Time	Criteria	
≤ 31 December 2027	either	Min. 50 % of RES
		Min. 50 % of waste heat
		Min. 75 % of CHP
		Min. 50 % of a combination (RES, waste heat and/or CHP)
≥ 1 January 2028	either	Min. 50 % of RES
		Min. 50 % of waste heat
		Min. 50 % of RES and waste heat
		Min. 80 % of high-efficiency CHP
		Min. 50 % of a combination (RES, waste heat and high-
		efficiency CHP) and min. 5 % RES
≥ 1 January 2035	either	Min. 50 % of RES
		Min. 50 % of waste heat
		Min. 50 % of a combination (RES and waste heat)
		Min. 80 % of a combination (RES, waste heat and/or high-
		efficiency CHP and min. 35 % RES
≥ 1 January 2040	either	75 % of RES
		75 % of waste heat
		75 % of a combination (RES and waste heat)
		Min. 95 % of a combination (RES, waste heat and/or high-
		efficiency CHP and min. 35 % RES
≥ 1 January 2045	either	Min. 75 % of RES
		Min. 75 % of waste heat
		75 % of a combination (RES and waste heat)
≥ 1 January 2050	either	100 % of RES
		100 % of waste heat
		100 % of a combination (RES and waste heat)

Strategy

- Meet these aims through <u>investments</u> and consumer <u>interaction/information</u>
 - Investments must seek to increase system efficiency, increase security of supply and increase the economic competitiveness by lower heating prices
 - Through consumer interaction/information, the system efficiency can be increased by e.g. lower return temperatures and expectations can be met

Strategy

- SWOT analysis
 - Obtain knowledge and experiences with RES
 - Seek sources of heat/fuels that increase flexibility (and security of supply) while lower fuel dependency
 - Utilize and further develop on the already wellestablished infrastructure
 - Seek state-of-the-art technologies at low investment cost by e.g. economic support schemes

Techno-economic analysis

- Model
 - All productions units (capacity, efficiency etc.)
 - Economic (fuel costs, taxes and tariffs, O&M, incomes etc.)
 - Local conditions (ambient temperatures, solar radiation etc.)
- Hourly simulation of annual production and costs
 - Optimizes production based on the hourly price of each production unit
 - Annual report of **production** and **finance**
- Investment costs
 - Based upon actual and comparable projects
- NPV
 - Combining the investment with the annual operational costs, a net present value can be calculated an compared for each investment

Net Present Value (NPV) is the sum of all future cash flows discounted to present value, used to assess investment profitability.

Techno-economic analysis

- Technology catalogue
 - Heat pumps
 - Electric boiler
 - Biomass boiler and CHP
 - Solar thermal collectors RES
 - Geothermal energy
 - Excess heat

Waste heat

Electricity

- - O&M costs Operation time Efficiency

Investment costs

Fuel costs

Capacity

Net Present Value (NPV)

Site area

Availability

Sustainability

Flexibility/ security of supply

• Thermal energy storage

Evaluation and simulation

Techno-economic analysis

- Mapping of excess/waste heat
 - Third-party maps
 - Self-produced map
- Low and high temperature sources
 - Higher temperatures are preferred
 - Lower temperatures can be utilized through heat pumps
- Low and high capacity
 - Capacity should be of a certain size for it to be feasible
- Mapping can also be used for other sources of heat such as geothermal energy

Results

Heat Pump 10 MW_{heat} Air/water Natural refrigerant

Excess/waste heat 0,5 MW Further investigated for more capacity...

Solar thermal collectors

23,850 m² effective solar panel area 10 ha of land area

Thermal storage 4,000 m³ (CHP, HP and biomass) 4,500 m³ (Solar thermal collectors)

Results

- Model simulation of 2030
- Technical results Ο
 - **Productions shares** •
 - Fuel consumption
 - Emissions
- All technologies are producing a significant shares of the overall heat production
- Coal is completely phased out
- Electricity is produced in the hours where it is profitable to operate the CHP
 - Cheaper alternatives will decrease the number Ο of hours
- Solar heat will produce all the heat needed during the summer

MPEC OSTRÓDA

Danish Energy

Results

- The 2035 requirements of the EU EED is fulfilled
 - RES > 50 % (66 %)
 - RES & high efficiency CHP > 80 % (85 %)
- Baseload will be covered by the biomass boiler, CHP and heat pump except for the summer where the solar thermal collectors will cover the heat demand
- The wide range of fuels will increase **security of supply**, and provides flexibility regarding fuel prices
- Thermal storages will increase flexibility even more
- The solar thermal collectors will make MPEC Ostróda independent of fuels during the summer period

Roadmap 2030 and beyond

- Investments are spread across the next 5 years
 - o 2026:

5 MW of heat pump capacity and 4,000 m³ thermal storage will provide enough for the last coal to be phased out

2027-2028:

Additional 5 MW heat pump based on the initial experiences of heat pump investment

2029-2030:

Solar thermal collectors are installed

- Development plan should be revised with regular intervals (e.g. every second year) as prerequisites will change over time
 - It is believed that the heat demand will increase in the future

ARTELI/

MPEC OSTRÓDA

DBDH

Danish Energy